ATOMIZE]JS
SAFE DISTRIBUTED SHARED OBJECTS

Matthew Sackman
matthew@rabbitmg.com

Introduction

INTRODUCTION

"TRENDS OF DEVELOPERS

* Push more and more logic client-side
* Single Page Website / Application
* Substantially reduce application logic on server

+ Server reduced to security, marshalling data, and distributing
data

INTRODUCTION

"TRENDS OF DEVELOPERS

* Push more and more logic client-side

* Single Page Website / Application

* Substantially reduce application logic on server

+ Server reduced to security, marshalling data, and distributing
data

* Various techniques for safely modifying and distributing
shared data

INTRODUCTION

"TRENDS OF DEVELOPERS

* Push more and more logic client-side
* Single Page Website / Application
* Substantially reduce application logic on server

+ Server reduced to security, marshalling data, and distributing
data

* Various techniques for safely modifying and distributing
shared data:
Remote Procedure Call, Polling and distributing, others

DATA DISTRIBUTION

FAMILIAR PROBLEMS?
* NodelS being single-threaded is broadly welcomed: simplifies
development

* But lots of clients making changes to shared data-structures:
back to the world of concurrency and parallelism

* What sort of problems might we want to solve?

DATA DISTRIBUTION

FAMILIAR PROBLEMS?
* NodelS being single-threaded is broadly welcomed: simplifies
development

* But lots of clients making changes to shared data-structures:
back to the world of concurrency and parallelism

* What sort of problems might we want to solve?
Example: inserting our username into an object

DATA DISTRIBUTION

FAMILIAR PROBLEMS?

* NodelS being single-threaded is broadly welcomed: simplifies
development

* But lots of clients making changes to shared data-structures:
back to the world of concurrency and parallelism

* What sort of problems might we want to solve?
Example: inserting our username into an object:

var users = {}; // Somehow populated by server
function register (myName) {
if (myName in users) {
alert("Username " + myName +
" already taken, try again");
} else {
users [myName] = {};
// Assume this change then gets sent to server

1}

DATA DISTRIBUTION

FAMILIAR PROBLEMS?
* Races! The inspection of users and the modification allow for
the users object to change in between.

+ Sure, maybe not in a single browser (due to JS being
single-threaded), but several browsers running the same code
at the same time?

* How do you even detect this sort of collision?

* If all you can do is detect a collision after the event, can you
still solve this sort of problem?

DATA DISTRIBUTION

Now]S

Has a timer which every 1000ms (or longer!) processes the

distributed object now

Essentially calculates the diff between the previous version

and the current version of the now object

Also uses functional getters and setters to intercept changes to

variables: not a true proxy so a bit limited

But explicitly avoids conflict resolution:
Note that you can write properties and call functions
with the everyone. nowobject but you cannot read
values. Since everyone. nowrepresents multiple
clients, they can have different values so reading them
doesn’t make sense.

Instead, RPC is used to invoke such functions on the server only

DATA DISTRIBUTION

METEOR

Meteor's livedata package heavily coupled to mongo.
Collections are the shared storage

Client-side implementation of (subset of) mongo called
minimongo

Modifications to client-side collections also send RPC calls to
server

The server can send down to clients modifications to
collections

Still multiple clients can attempt to modify the same
collection: both do an insert of the same key but different
values. Which wins? How can you tell?

DATA DISTRIBUTION

WHAT’S REALLY NEEDED TO SOLVE THESE PROBLEMS?

* Locks

DATA DISTRIBUTION

WHAT’S REALLY NEEDED TO SOLVE THESE PROBLEMS?

* Locks are well studied

DATA DISTRIBUTION

WHAT’S REALLY NEEDED TO SOLVE THESE PROBLEMS?

* Locks are fairly well hated too

DATA DISTRIBUTION

WHAT’S REALLY NEEDED TO SOLVE THESE PROBLEMS?

* Locks are fairly well hated too

* Butlocks are also used in the implementation of transactions,
and we all know how to use transactions

DATA DISTRIBUTION

WHAT’S REALLY NEEDED TO SOLVE THESE PROBLEMS?

* Locks are fairly well hated too

* Butlocks are also used in the implementation of transactions,
and we all know how to use transactions

* Enter, Software Transactional Memory

Software Transactional Memory
(STM)

SOFTWARE TRANSACTIONAL MEMORY

Just like database transactions, you write transactions in your
code

These transactions are applied to the shared state, somehow,
maintaining (some of) the ACID properties

atomically: Transactions are atomic (all or nothing)

in isolation: Transactions are isolated from one another. That is,
even though in general there will be many transactions
running concurrently, any given transaction’s updates are
concealed from all the rest, until that transaction commits.
Another way of saying that same thing is that, for any two
distinct transactions T1 and T2, T1 might see T2's updates
(after T2 has committed) or T2 might see T1’s updates (after T1
has committed), but certainly not both.

SOFTWARE TRANSACTIONAL MEMORY

ExAMPLE

function register (myName) {
atomize.atomically(function () { // The Transaction
if (myName in atomize.root.users) {
return false;
} else {
atomize.root.users[myName] = atomize.lift({1});
return true;
}
}, function (success) { // The Continuation
if (!success) {
alert("Username " + myName +
" already taken, try again");

b;

SOFTWARE TRANSACTIONAL MEMORY

ADVANTAGES
* No explicit locking!
+ Cannot deadlock!
* Lots of optimisation opportunities

 Performance can match the most perfect fine-grained locking
equivalents

SOFTWARE TRANSACTIONAL MEMORY

IMPLEMENTATION - ONE APPROACH OF MANY

* Client creates empty transaction log

+ Client runs transaction and captures in the transaction log the
effect of the transaction along with the version of every object
read or written to

+ Client sends transaction log to server

« If object versions are current according to the server, apply
transaction on server and return success to client

* Otherwise:

+ Don't modify anything on the server

+ Send updated objects to client along with failure message

+ Get client to throw away old transaction log (i.e. undo the effect
of the transaction) and rerun the transaction (i.e. goto 10)

SOFTWARE TRANSACTIONAL MEMORY

STM IN JAVASCRIPT

 So transactions are run client-side, but then the effect is sent to
the server and verified. Thus transactions run in clients in
parallel.

* Any transaction that reads an old version of an object will get
restarted with an updated copy of that object

+ The continuation only gets invoked once the transaction
function has been run and committed - i.e. it completed
without anyone else modifying any of the objects that it read
or wrote to

SOFTWARE TRANSACTIONAL MEMORY

TRANSACTIONS ON STEROIDS

 retry: this allows you to say abandon this transaction, but
restart it when someone modifies any of the variables I've read so
far

* orElse: this allows you to compose transactions easily:
provide a list of transaction functions and when one hits a
retry, just start the next transaction function instead of doing
afull retry

 retry allows you to implement the observer pattern, and from
there, you can build out e.g. shared queues

+ Unlike databases, transactions are automatically restarted

SOFTWARE TRANSACTIONAL MEMORY

IN COMPARISON TO LOCKS

* Equivalent to very fine grained readers-and-writers locks

* Essentially: capture the effect of this transaction locally, and
then take a read-lock on everything | read, and a write lock on
everything | wrote to, and if after all of that | read and wrote to
the same versions of objects as I've just locked then write the
changes out globally, and release all the locks

* Opportunistic concurrency

AtomizelS

ATOMIZE]JS

ATOMIZE]JS

* Server written for NodeJS
+ Client library for both browsers and NodeJS

+ A globally distributed root object against which you perform
transactions

* Objects can be detached from the root object but are still
managed by AtomizelS

root]

>

queue -

EXAMPLE: SHARED QUEUE

——————— el

L - >

EXAMPLE: SHARED QUEUE - WRITING

function enqueue(elem, cont) {

atomize.atomically(function () {
var obj = atomize.root.queue;
obj.next = atomize.lift({});
obj.value = atomize.lift(elem);
atomize.root.queue = obj.next;

}, function (_result) {
cont();

s

EXAMPLE: SHARED QUEUE - READING

var myPos = atomize.root.queue;

function dequeue(cont) {

atomize.atomically(function () {

if (! ’value’ in myPos) {
atomize.retry();

}
var result = myPos.value;
myPos = myPos.next;
return result;

}, cont);

EXAMPLE: SHARED QUEUE

PROPERTIES OF SHARED QUEUE

* No server-side code

+ Anyone can safely write to the queue: concurrent writes will
not overwrite each other

* Anyone can read from the queue
* Every client can read from the queue at their own pace
* Implementation is a plain, simple, linked list

+ Actions on the list are obvious implementations, just wrapped
in atomically calls

+ Single writer and multiple readers will never cause conflicts at
commit

¢ Use of retry means readers who catch up with the writers can

immediately be informed when a new value is appended to
the queue

EXAMPLE: MONGO-BACKED OBJECTS

IDEA

* In the NodelJS server, watch for any changes so specific objects,
and mirror those changes in Mongo

+ On start-up, read data in from Mongo and populate the
Atomize distributed object

+ Clients can then read and write from/to Mongo by
manipulating the normal object graph

* No RPC - no special APIs

* Make use of watch: wrapper around retry which calculates
exactly what has changed since we last saw the object: map

from object to object with 3 fields: added, modified and
deleted, all lists of field names

ExaAMPLE: MBO - POPULATING COLLECTIONS

populateAtomizeAndWatch: function () {
var self = this;
this.collMongo.find({}, function (err, cursor) {
cursor.toArray(function (err, items) {
atomizeClient.atomically(function () {
var idx, item, itemCopy, itemAtomize, key;
for (idx = 0; idx < items.length; idx += 1) {
item = items[idx]; key = item._name;
itemCopy = cereal.parse(cereal.stringify(item));

self.collAtomize[key] = atomizeClient.lift(itemCopy);
}

}, function () {
for (idx = 0; idx < items.length; idx += 1) {

item = items[idx]; key = item._name;
self .items [key] =
new Item(self.collMongo, self.collAtomize[key]);
self.items[key] .watch();
}
self.watch();
b
b;

"\

ExAMPLE: MBO - WATCHING COLLECTIONS

watchFun: function (inTxn, deltas) {
var collDelta = deltas.get(this.collAtomize), idx, key;
if (inTxn) {
while (collDelta.modified.length > 0) {
key = collDelta.modified.pop();
collDelta.deleted.push(key) ;
collDelta.added.push(key);
}
for (idx = 0; idx < collDelta.added.length; idx += 1) {
key = collDelta.added[idx],
this.addItem(key, this.collAtomize[key], true);
}
} else {
while (collDelta.deleted.length > 0) {
key = collDelta.deleted.pop();
this.items[key].running = false;
delete this.items[key];
this.collMongo.remove({_name: keyl});
}
while (collDelta.added.length > 0) {
key = collDelta.added.pop(Q);
this.addItem(key, this.collAtomize[key], false);
¥
}

ExXAMPLE: BOMBERMAN

OBSERVER-PATTERN AND SAFELY MODIFYING SHARED STATE
GETS YOU A LONG WAY

* Grid, player locations and bombs are shared state

* Every time a player moves is 1 transaction

* Players responsible for detecting their own death

* Bombs are exploded by the player that planted the bomb

* Uses HTML Canvas

+ Slightly latency sensitive!

Conclusions

ATOMIZE]JS

CONCLUSIONS

+ Simple and consistent paradigm
* Small but powerful API

+ Easy and intuitive how to build richer libraries: both explicit
communication patterns and shared data-structures

* retry supports trend for popular Functional Reactive
Programming style popularised by Flapjax, Knockout, Meteor
live-ui

* Ability to write identical code on client and server

* Fairly easy to make the server relay changes to other systems -
i.e. act as proxy

ATOMIZE]JS

RoaDp-mMmAP

* Better story needed for older browsers: translation tool exists
and works very well, but could integrate dynamically into
NodelJS if NodelS is serving static artefacts

* Security model: genuinely hard to work out what’s wanted
here

+ Tutorials, demos, screen-casts, attracting audiences, making it
seem less like hard-core CS!

ATOMIZE]JS

GETTING ATOMIZE]JS

* http://atomizejs.github.com/
* Open source: MIT license

* mailto:matthew@rabbitmq.com

http://atomizejs.github.com/
mailto:matthew@rabbitmq.com

Thank you. (More) questions?

	Introduction
	STM
	AtomizeJS
	Conclusions

